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Abstract—This paper revisits distributed termination detection
algorithms in the context of High-Performance Computing (HPC)
applications. We introduce an efficient variant of the Credit
Distribution Algorithm (CDA) and compare it to the original
algorithm (HCDA) as well as to its two primary competitors: the
Four Counters algorithm (4C) and the Efficient Delay-Optimal
Distributed algorithm (EDOD). We analyze the behavior of each
algorithm for some simplified task-based kernels and show the
superiority of CDA in terms of the number of control messages.

Index Terms—Termination detection, credit distribution algo-
rithms, task-based HPC application, control messages.

I. INTRODUCTION

A distributed application is terminated if all processes
have completed the computations assigned to them and no
message is in transit within the interconnection network.
Termination detection is a fundamental issue for distributed
systems, because — for dynamic applications — no process
has complete knowledge of the global configuration (the state
of all processes and of the network) [1]. In particular, an
idle process may be reactivated by a message from another
process, complete its new assignment, send some work or-
ders to be completed by remote processes, and then become
idle again and so on. Many active-to-idle and idle-to-active
transitions can take place before the application eventually
terminates. Since the pioneering work of Dijkstra, Scholten,
and Francez [2], [3], countless algorithms have been proposed
for termination detection.

Many high-performance computing (HPC) applications can
rely on straightforward techniques for termination detection.
For instance, many dense or sparse factorization algorithms
terminate when the bottom-right diagonal element of the
matrix has been updated, and termination can safely be de-
clared right after the completion of that last operation. More
generally, many HPC applications are structured as a task
graph with all dependencies statically known before execution.
Termination can safely be declared once all exit tasks (tasks
without any successor task) of the graph have been completed.
However, there are also many HPC applications whose task
graphs are dynamically updated during the execution: the
application task graph is data dependent, and new tasks may
be created depending on the value of the output of another
task. Typical examples are partial differential equation (PDE)
schemes, where the necessary degree of refinement is dictated
by the physics of the simulated material. For all of these ap-

plications, a distributed termination detection algorithm must
be implemented.

Our main contribution is the design of a new termination
detection algorithm that is specialized for HPC platforms. We
adopt a simplified but realistic model for such platforms. For
instance, message loss and re-ordering are routinely managed
by the network layer (e.g. MPI, OpenSHMEM,etc.), hence we
can safely design algorithms that benefit from these features
and assume that messages are delivered in FIFO order. We
focus on performance at scale and aim at minimizing the
overhead incurred by the termination detection algorithm on
the application. Clearly, detection algorithms that use many
control messages will delay, or add extensive management of,
application messages and will be detrimental to application
progress. In this work, we consider different classes of ter-
mination detection algorithms and evaluate their overhead in
terms of the number of control messages that are generated.

We distinguish and compare three main classes of algo-
rithms for termination detection. First, many algorithms use
ascending and descending waves of control messages, and
we discuss the Four Counter algorithm (4C) — a state-of-the-
art wave algorithm — in Section IIl. The Credit Distribution
Algorithms (CDA) are another set of algorithms proposed
independently by Huang [4] and Mattern [5]. These algorithms
are also known as weight-throwing algorithms, and they use
a controlling agent that initially distributes some credit to all
processes. When sending an application message, a process
keeps a fraction of its current credit and transfers the remaining
fraction through the message; upon reception of a message,
the credit carried by the message is added to the credit of
the receiving process. Finally, when becoming idle, a process
returns its credit to the controlling agent. The controlling
agent declares termination when all of the initially distributed
credit has been returned to it. We introduce the original
algorithm, “Huang’s CDA” (HCDA), discuss several existing
variants, and propose a novel CDA algorithm dedicated to
HPC platforms in Section III. Finally, a more recent class
of algorithms, Efficient Delay-Optimal Distributed (EDOD)
termination detection algorithms [6], requires that a control
message acknowledging primary messages reception is sent
by the receiver of each application message back to the
sender; this is to ensure that the sender can be safely declared
terminated once all of its messages have been acknowledged.
These control messages go up and down a control binary



tree — independent of the application communications. EDOD
is carefully designed to minimize the latency of termination
detection, and we describe it in more detail in Section III.

Our main contribution is the design and implementation of a
novel CDA variant that drastically improves performance, un-
der the constraints of an HPC system, with a more conservative
but mathematically accurate credit management system, where
the borrowing operation can be satisfied by a neighbor process
with more abundant resources. We evaluate the algorithms in
terms of the number of control messages, through a theoretical
analysis for the token ring application, and through simulations
for synchronous tree-based task systems. As stated above, we
focus on the number of messages generated by each algorithm
as the key indicator of performance and overhead.

The paper is organized as follows. In Section II, we present
motivating applications and systems that require termination
detection. We review 4C, HCDA, and EDOD in Section III.
We introduce our new CDA algorithm in Section IV and
provide a theoretical comparison with HCDA, 4C and EDOD
in Section V. We survey related work in Section VI. We
provide concluding remarks and directions of future work in
Section VII.

II. DYNAMIC APPLICATIONS AND TERMINATION
DETECTION

Termination detection is often implicit or trivial in regular,
static applications, for which the control-flow of the applica-
tion and/or the initial load balance of the work is sufficient
to decide, locally, the termination. The issue becomes more
crucial for dynamic applications expressed over asynchronous
programming paradigms, for which the total amount of work is
data dependent—and therefore remains unknown until comple-
tion. Here, we focus on efficiently detecting that an application
producing supplementary work and messages, from process-
local criterion, is globally complete.

To illustrate the concept, consider the example of k-
dimensional trees that represent approximations of multidi-
mensional functions and operators. Consider for ¥ = 1 a
function, f(x), that should be approximated over a domain,
[A, B]. A 1-dimensional tree is used to approximate the values
of f by splitting [A, B] into subdomains, [a;,b;). For each
subdomain, a leaf in the tree is created that carries a single
value: the average of f in that subdomain, f: f(z)dx/(b—a).
The size of the subdomain (and thus the quality of the
approximation) is set by selecting the depth of the leaves in
the tree. Figure 1 illustrates this approach.

A task-based approach to create such representations is
used in the Multiresolution ADaptive Numerical Environment
for Scientific Simulation (MADNESS) [7], which is a high-
level software environment for the resolution of integral and
differential equations in multiple dimensions using adaptive
and fast harmonic analysis methods with guaranteed precision.
The operation of creating a tree that represents a given function
in a given domain for a target precision is called a “projection.”
A natural and efficient algorithm to implement the projection
consists of walking down the tree in parallel, with each task

instantiating a node and deciding locally if a given node in the
tree is refined enough to reach the target precision, in which
case it is defined as a leaf. If not, its 2k children are spawned
to increase the refinement. As the algorithm proceeds with
refining the nodes, a mapping defines which tasks/nodes are
held by which process of the parallel application. Depending
on the targeted function, refinement, and data distribution, a
process may be done with all current tasks but still receive
more tasks to instantiate higher refinements at any time—until
all processes are finished with all tasks.

A naive approach to detect termination for this algorithm
would be to wait for the entire subtree to complete before
letting the task complete, every time a task spawns refinement
nodes. This approach has multiple obvious drawbacks: if the
wait monopolizes computing resources, a starvation will occur
when the number of nodes in the k-dimensional tree exceeds
the number of computing elements. Even if better strategies
are implemented to avoid this resource consumption, control
information about the completion of each task must be sent to
the process holding the parent node, thereby introducing large
delays and costs. Because a process may receive work at any
time, local observations that the number of tasks to complete
has reached zero is not sufficient to decide termination, and a
distributed termination algorithm is necessary.

This issue occurs in many tree-based algorithms and is a
key part of composition. For example, occurring frequently in
MADNESS algorithms, multiple functions must be projected
in order to be derived, summed, multiplied and integrated to
compute a solution to the final problem. To reduce overheads,
all of these operations should start with maximum concur-
rency, but knowledge about the completion of dependent
operations is necessary to ensure the correctness of the result.
Distributed termination detection algorithms rely on observing
the activity of the processes, as well as the injection and
delivery of application messages, sometimes modifying them
to piggyback information. Since these roles are assigned to
the runtime system, it is also natural to assign the role of
detecting the termination of global operations to the runtime
environment.

III. ALGORITHMS FOR TERMINATION DETECTION

Sections III-B to III-D detail the main features of the three
primary detection termination algorithms from the literature:
4C (waves with in-transit message detection), EDOD (ac-
knowledged primary messages), and HCDA (Huang’s credit
distribution), which we contrast with our own CDA algorithm
in Section IV. Beforehand, in Section III-A, we review the
system model common to all algorithms.

A. System Model

We consider a distributed system comprised of a set of
‘P processes with an independent clock and a local memory.
The processes are connected through an asynchronous inter-
connection network capable of carrying messages in 1-port
duplex mode with an arbitrary, but finite, delay. Processes and
messages are considered here in the general sense: processes
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Figure 1: Sample application: 1—dimensional tree whose refinement locally depends on the slope of the target function.

may employ internal shared-memory parallelism (which is
abstracted from the model), and remote memory accesses can
be considered as asynchronous messages. The processes and
network are reliable, and we assume that the interconnection
network is complete; that is to say: any process may send
a direct message to any other processes. We also assume
that messages may not overtake; in other words, the network
is assumed to be FIFO, or the network library manages
ordering and reemission as necessary (e.g. MPI). Although
not required for correcting the algorithms, these assumptions
simplify performance analysis.

A parallel workload executes internal actions on the pro-
cesses, either executing a task or creating a new task. Task
mapping (to processes) is determined by an application-
provided mapping function, and successor tasks may be
mapped onto a remote process, which entails the emission
of a message. When the destination of a message is the local
process, it is considered a local action.

In such a distributed system, we consider the termination
detection problem. Termination detection is achieved when
all processes know that every process has completed the
workload. More formally, a process is still considered active
when it has pending actions, including when it is executing a
task, has scheduled tasks to execute locally, or has pending
emissions to perform. When a process does not have any
further pending local actions, it becomes idle. A process may
exit from the idle state and return to the active state only
when it receives a message (i.e., tasks can be only created
upon completion of another task). Without loss of generality,
we consider that, initially, one process contains a startup
task (there is a trivial transformation to render any workload
with multiple initial tasks compliant). The termination of the
workload is a global stable state that is reached when, in a
global snapshot [8], every process is in the idle local state,
and there are no in-transit messages (since, otherwise, these
in-transit messages could create work for some of the idle
processes). The termination is detected when every process
has been informed that this global state has been reached.

Termination detection algorithms are thus distributed algo-
rithms that observe that the global state has been reached and
then announce it to all processes. In some algorithms, the
detection and announce phases may be merged or overlapped.
The distributed termination detection algorithm likely requires
the exchange of secondary messages (i.e., supplementary
control messages added to the primary messages generated by
the parallel workload). These secondary messages allow the
process states to be gathered/reported to a centralized entity
or be part of a termination broadcast.

B. The 4C Wave Algorithm

In wave algorithms, when a process becomes idle, it initiates
a wave to verify the state of other processes in the system. The
wave crosses the network and collects the status of individual
processes and their communication channels at some process
— either at the initiator or at some external entity. That process
then inspects the collected global state to ascertain when the
global termination state has been reached. For example, a pro-
cess that switches from active to idle may initiate a distributed
snapshot. The snapshot permits to detect in-transit messages,
i.e., messages that have been emitted before the beginning of
the wave, but received after its beginning at another process.
Thus, after completing the snapshot, a process can report to
the announcer if it was active, or if it detected an in-transit
message at the logical time of the snapshot. Unfortunately,
this approach requires performing a large number of waves.
Specifically, one wave for every process’s transition from
active to idle, which — in the worst case — may result in as
many waves as primary messages. The approach also suffers
from a large termination detection delay.

The 4C wave algorithm, which has seen some practical uses
in [7], can avoid some of these caveats. In this algorithm,
processes are organized along a secondary tree overlay, and the
root of that tree announces when termination is detected. Every
process, p, counts how many primary messages it has sent, s,
and received, 7. It also maintains two accumulating counters,
Js; and ar;, initially set to 0, representing the cumulative
number of primary messages sent and received by all processes
in the subtree rooted at p — as collected during wave 1.

Independent of their idle or active state, processes can be
in the UP or DOWN state (UP initially). When a leaf in the
tree becomes idle in the UP state, it enters the DOWN state
and sends its two counters to its parent in a STOP message.
When a node in the tree receives a STOP message from its
children, it accumulates the counters. When it becomes idle
in the UP state and has received a STOP message from all
of its children, it enters the DOWN state and propagates the
counters to its parent.

When the root enters the DOWN state, it compares s;.,;,
or ori-l and o5}
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@ oot O, root- 1f they are all equal, it broadcasts
the termination; otherwise, it sends down a REPEAT message
(propagated by all) that initiates the nodes’ transition from the
DOWN state to the UP state (thus starting another wave).

Comparing os’,,, and or’,., is not a sufficient condition
for termination, as one has to account for orphan messages,
i.e., messages emitted by some process after the wave and
received by some other process before the wave. If the wave
is crossed by orphan messages, the reception is counted in the



accumulator, o7’ ,, but its emission is not. Thus, an orphan
message may cancel the difference, ori,,, — osi,,, even
when an in-transit message is present, which would render the
algorithm incorrect. If the value of os’,,, remains constant
during two consecutive waves, then the prior wave had no
orphan messages, hence the counter comparison is a valid
estimator for the absence of in-transit messages.

C. Optimal Delay Algorithm

Mahapatra and Dutt [6] note that many termination detec-
tion algorithms focus on optimizing for the minimal number
of secondary messages but often exhibit poor detection delay
on commonly used primary communication patterns, like .-
ary n-cubes, especially when considering a bounded port
model, where message management time is considered. For
this reason, the authors focus on designing an algorithm the
purpose of which is to attain the optimal detection delay on
arbitrary primary communication patterns.

Their EDOD algorithm requires that primary messages be
acknowledged by secondary messages to prevent premature
termination announcements. Their algorithm also uses a sec-
ondary static spanning tree to reduce status change messages to
the root and to broadcast the termination announcement. The
secondary overlay can be (but does not have to be) extracted
as a subset of the primary communication topology when it
is known in advance. The root is then selected as a central
process at a minimal distance to all leaf processes.

When the root process becomes idle, it announces the
termination. When a non-root process becomes idle, it sends
a STOP message to its parent. A process cannot become idle
until it receives a STOP message from all of its children.

During the normal course of the computation, the algorithm
counts the outgoing primary messages. A process cannot
become idle until it receives a secondary acknowledge mes-
sage for every outgoing primary message. When receiving a
primary message, the receiver, r, may be active or idle. When r
is active, it acknowledges the reception using a direct ACK; ,
secondary message to the sender s. When r is idle, it becomes
active and sends a RESUME, ,, message to its parent. The
parent may receive the RESUME, , message when it is active
or idle. When an idle parent receives a RESUME;, , message
from a child, it becomes active, forgets the reception of the
STOP message from that child, and forwards the RESUME; ,.
message to its parent. When an active parent receives a
RESUME, , message from a child, it forgets the reception
of the previous STOP message from that child, and sends the
ACKj , to 7, following the inverse path from the RESUME; ,
message, then r sends ACK , to s directly. In effect, delaying
the ACK; , message prevents the root of the subtree containing
s and r from becoming idle when a potential RESUME; ,.
message is canceling the STOP-message-induced actions on
r’s ancestors.

D. Credit Distribution Algorithms

In a credit distribution algorithm (e.g., HCDA), as originally
proposed independently by Huang [4] and Mattern [5], an

initiator controlling agent starts the computation with Clyy
total credit, and the initiator distributes the credit among
processes according to the initial activity of the processes.
During execution, messages carry credit between processes:
when a process sends a message, it sends a fraction of its
credit along with the message and keeps a fraction of the
credit for itself. When a process receives a message, it adds the
message-carried credit to its own credit stash. When a process
becomes idle, it returns its entire stash of credit to the initiator.
From there, the initiator process can detect the termination of
all other processes when it again has Cl,, credits. Note that,
as usual, an idle process may reset to active as a result of
receiving a message. In this case, the process transitioning
from an idle to an active state inherits the credit that has been
carried in the in-transit message, thus guaranteeing that the
initiator misses a fraction of the C,,,; credits for as long as
any in-transit or active processes remain.

This approach is elegant in theory, but it suffers from
multiple drawbacks that hinder its implementation. In non-
infinite precision arithmetic, the HCDA algorithm is subject
to an underflow problem when dividing the weight into two
halves upon message emission. To partially alleviate this
problem, Mattern [5] suggests using only credits of the form
X =27Y where Y is an integer, and to encode Y = —log, X
to represent X. This requires some modifications to the
algorithm, outlined below.

o Use 277 as the initial local credit, where 2¢~1 < P < 29,
and total credit is now Ciyy = P279.

* An active node receiving a basic message returns the
message-carried credit to the collecting agent, instead of
storing it locally, to keep its own summing simple.

Then, all message weights have a weight, 2=Y for some
Y, and sending a message splits the weight by incrementing
Y. However, the complete summation is delegated to the
controlling agent rather than eliminated, and many secondary
control messages are needed to return the non-locally summed
credit to the controlling agent.

Another variant suggested in [1, Ch. 6] allows a node
without any remaining credit to create its own credit currency
and start a weight-throwing termination detection subcall.
Then, that node returns its weight to the initiator when it has
become passive and its subcall has terminated. The weights
originating from the initiator and from the node must be
maintained separately. Again, this variant incurs additional
control overhead and extra delays. In Section IV, we discuss
how we build upon the basic HCDA strategy to design an
algorithm suitable for extreme-scale, distributed HPC systems
in a manner that avoids producing a large number of secondary
credit return messages and operates without messaging delays.

IV. CDA For HPC

We expand on the classical CDA algorithm with original
considerations for HPC platforms executing large-scale, dis-
tributed dataflow programs. The major challenge with CDA is
the credit attrition resulting from the non-infinite divisibility



of the credit representation. Our CDA algorithm strives to
achieve a low number of control messages while reducing the
disruption of the exchange of primary messages. In our CDA
algorithm, credit is represented as integer values (i.e., credit is
not infinitely divisible but can be summed efficiently without
arbitrary precision arithmetic). During the initial state, credit
is distributed equally among nodes. Each process starts with
an initial credit of value, Cj,;;, known by all. The total amount
of credit distributed initially is thus Cj,,; = PClyir. Note that,
in certain applications, not all processes are initially active,
and an application-specific policy may have achieved a more
optimal initial distribution (e.g., by dividing the credit among
initially active processes) but at the expense of losing gener-
ality. Initial credit is computationally generated and requires
no secondary messages to be distributed.

When a process becomes idle, it returns its credit to the
controlling agent with a FLUSH secondary message. This
strategy has two drawbacks: (1) it increases the number of
control messages, significantly in the worst case; and (2) it
accelerates the rate of global attrition of credit in non-initiator
processes by removing the flushed credit from circulation
(hence increasing the chance that some active process will run
out of credit). In primary algorithms executed as a dataflow, the
locally visible horizon of tasks scheduled in the runtime can
be leveraged to detect that an outgoing message is terminal,
that is, the last message sent before a transition to idle.

We observe that sending the whole locally available credit
along with pending terminal emissions has multiple benefits: it
avoids generating FLUSH messages and maintains more credit
available among active processes. When sending a primary
message, a process splits its locally available credit (accord-
ing to different policies detailed below) and “piggybacks” a
fraction of the credit onto the message. Because the piggyback
is of fixed size (since our credit representation does not grow
to remain infinitely divisible), the practical cost of adding
the piggyback to primary messages is trivial. However, it is
possible that a process that needs to emit primary messages
would run out of locally available credit. In this case, the
process requests (with a secondary BORROW message) the
allocation of supplementary credits from the controlling agent.

The controlling agent counts how many credits have been
created during the execution in a counter that grows as neces-
sary, thereby ensuring that the controlling agent will never fail
at providing supplementary credits. As a consequence, more
credit than is representable by the maximum value of local
and message credit may be in circulation in the system. If
a non-controller process receives a message containing more
credit than it could accumulate in a single variable without
an overflow, its local credit is set to the maximum, and all
remaining credit is immediately returned to the controlling
agent. For as long as a process is out of credit (e.g., the time
period required for the secondary BORROW request to round-
trip to the control agent), the process has to delay the emission
of all primary messages, since it would otherwise carry the risk
of resetting the destination process to active without holding
message carried credit.

Running out of credit is a major performance hurdle and
should be avoided. To reduce the likelihood of running out
of credit, we devise two complementary strategies: (1) the
credit division strategy that we employ operates under multiple
regimes, and (2) credit borrowing is prefetched.

The minimum credit that a primary message may safely
carry is 1. While this strategy reduces the attrition rate at the
sender process (by leaving as much credit as possible at the
source), if a message reaches a process that has little credit
left (e.g., an idle process that had rid itself of all its local
credit), then that process will need to borrow credit from
the controlling agent and delay the next primary message.
Conversely, if a process divides the credit into two halves for
every message (as is customary in many CDA algorithms,
including HCDA), then local credit declines very quickly (at
an exponential rate) with the number of outgoing messages —
leading to a high chance of the process running out of credit
before it receives credit naturally through its primary message
receptions.

We devise a multi-regime strategy that avoids both issues.
When a process holds abundant credit (i.e., above a threshold
value, C,,,) the process employs a credit division strategy
to improve the chances that destination processes may carry
more message emissions without borrowing. Multiple mes-
sages may be sent simultaneously (from the view of the
emitter process and independently of the port model of the
network) when a task creates multiple successors at remote
processes. Each individual successor task may represent an
individual emission, yet all are created during the same local
step. Message emissions may also appear simultaneous for
a process when considering an asynchronous communication
system that enqueues non-blocking emissions. Messages may
be scheduled from additional tasks that are completing at the
local process before the initiation of previously scheduled
emissions at that same process. In both cases, instead of
dividing the credit by two for every message, credit is divided
uniformly among all outstanding emissions when message
emissions are simultaneous. We maintain a counter of shares,
S, which counts how many shares are known for the current
credit. S is equal to the number of outgoing messages, plus one
if the process remains active. Letting C,,, denote the current
credit amount, each message receives |Cy,,| /S| credits.

When local credit drops below C,,,, the allotment of credit
per message is modified to carry a fixed amount of credit
per message W,,,. The goal is to conserve the local credit to
enable the process experiencing low availability of credit to
keep issuing messages with no delays, for as long as possible.
Overall, the credit allocation function uses the following
formula to set the credit, w;, on an outgoing message, m;,
at a process with current credit, C,,, and S shares.

Wi = if Ccur > Ccon
L if Ccur < Ccan

In addition, to further avoid delaying emissions, when less
than Cjero 18 available, the process proactively issues a BOR-
ROW message to replenish its credit with additional credit

G |

min(| %, W)



from the control process. The amount of credit returned by the
control process is Cj,;. In some cases, this may increase the
number of secondary BORROW messages, as the process may
have received credit (from primary message receptions) before
reaching an indivisible credit, but the severe performance
penalty resulting from delaying primary messages supports the
deployment of this optimization.

V. ANALYSIS

In this section, we compare the 4C, EDOD, HCDA, and
CDA algorithms in terms of their number of control messages,
which is the key parameter to assess and compare their
respective overhead. We use two simple applicative kernels
for this comparison: (1) the token ring, which is the archetype
case study for distributed algorithms; and (2) the projection op-
eration in 1—dimensional trees described in Section II, which
is representative of tree-based synchronous computations.

A. Token ring

The token ring is a kernel widely used to assess the perfor-
mance of distributed algorithms [9], [10], [11]. Informally, it
consists of several steps, with a token randomly moving from
one process to another at every step, and a random number of
steps. We use the following instantiation.

* The token is initially owned by process O.

* With a fixed probability of p < 1, the token owner draws a
process number randomly and uniformly in [0,P — 1] and
sends a message (the token) to that process. The algorithm
stops with a probability of ¢ =1 — p.

The expected number of steps (token moves) of the algo-
rithm is 1. At each step, the token owner performs some
computation, the precise length of which is not important but
is assumed to be long enough so that all control messages
of the termination detection algorithm are processed before
the next step begins. In other words, we can view the steps
as synchronized, with the termination algorithm detecting
termination (or not) at the end of each step.

The token ring mimics the termination pattern of an applica-
tion that ends with a linear chain of tasks, the length of which
is data dependent. Our results are shown below in Theorem 1.

Theorem 1. The expected number of control messages of 4C,
EDOD, HCDA, and CDA for the token ring is the following:

* E(4C) > ; x P+ P +o(P)

+ E(EDOD) > L x 3log(P) + 2P + o(P)
» E(HCDA) = ¢ + 5 + P+ o(P)
« E(CDA) < 2P

We see that EDOD is more efficient than 4C at each
step, and that CDA is the clear winner as soon as the token
circulates at least P times.

Proof. At each step of the token ring algorithm, the sender
node makes an active-to-idle transition, while the receiver
node is awakened by the token message and makes an idle-to-
active transition. Because we assume the steps do not overlap,

these are the only two transitions during the step, and all the
other processes remain idle.

For the 4C algorithm, the sender initiates a chain of
messages by notifying its parent in the control tree. There
are two cases, described below.

* If the receiver is not an ancestor of the sender in the control
tree, it will notify its parent, which in turn will notify its
parent, thereby eventually reaching the root. If the current
step is not the last step, the root will detect that the current
wave has failed (because not all nodes have reported being
idle) and will propagate this information down to tree to all
processes via a descending wave; if this is the last step, the
root will detect termination and send the final descending
wave; in both cases, the cost is P — 1 control messages.

o If the receiver is an ancestor of the sender in the control
tree, the chain of messages from the sender to the root will
be blocked by the receiver. But this latter event has a small
probability, because there are at most log(P) nodes in the
path from the sender to the root. Hence, the probability of
the receiver belonging to that path is at most %.

Altogether, the expected number of control messages per step
is at least (1— %)(P*l)‘#% x1="P+o(P). Adding
the cost, P — 1, of the final notification broadcast, we get the
result for E(4C), since the expected number of steps is %. For

the EDOD algorithm, we have the following analysis.

* Initially, every node transitions from active to idle, either
immediately or after sending the first message for the
initiator, and sends a message to its parent in the control
tree; therefore, there are P — 1 messages.

* For each token message at each step, an acknowledge
message is sent by the recipient to the sender. It goes through
a chain of resume and acknowledge all along the unique
path in the control tree connecting both nodes. The number
of control messages is equal to the distance between both
nodes in the control tree. The average distance between two
nodes in a complete binary tree of P nodes is asymptotically
2logP [12]. As a side node, we see that this average
distance is of the same order as the diameter of the tree,
which can be explained by the fact that the majority of
nodes are leaves of the tree (see [12] for further details).

* We have to add the stop messages, propagated by the sender
up to the tree, which leads to log P additional messages per
token message. Altogether, the overhead is 3log P per step.

Adding the cost, P — 1, of the final notification broadcast, we
get the result for E(EDOD). Finally, we discuss the number
of control messages for the credit distribution algorithms. For
HCDA, we count a message (to return the credit) every step
and two messages (borrowing request and extra credit) every
log(Ciyit) steps, when the credit piggybacked in the primary
message runs out. For CDA, this means the following.

* After the first step, process 0 (the source node) becomes idle
after the token message is sent, and it transfers all its current
weight, Cj,;;, into the token message and has nothing to
return to the controlling agent. All nodes except the source



node were active and became idle during the first step, hence
they return their total weight to the controlling agent, which
amounts to P — 1 control messages.

* While the token iterates during the following steps, the
sender has weight, Cj,;, and transfers it into the message,
and then it has zero weight and does nothing more. The
recipient had weight, 0, and gets Cj,;; from the message.

* Upon termination, the recipient sends its weight, C',;;, back
to the controlling agent.

Altogether, the overhead is P messages (out of which P — 1
are sent during the first step), hence the result for E(CDA)
when adding the cost of the last termination broadcast. An
important distinction for CDA is that the total number of
control messages is independent of the number of steps. [J

B. Non-deterministic binary trees

We consider now the projection operation in 1—dimensional
trees described in Section II. In practice, we can model such
an operation with a task graph that unfolds a binary tree,
each node having two children with some probability, and
being a leaf otherwise. Since an exact analysis with arbitrary
task weights is out of reach, we present a simplified scenario
to evaluate the average performance of the four algorithms.
The simulation works as follows: first, we precompute some
application trees with the following algorithm:

(1) Start with a complete tree of height L,,;, = 3.

(2) For each leaf, at level [ with probability \!, refine by
replacing the leaf with a complete subtree—the height of
which is drawn uniformly and at random between 2 and
5 (i.e., we add between 2 and 30 new nodes).

(3) Repeat the last step on all new leaves until no leaf is
refined.

(4) Crop the tree if its height exceeds L.

The tasks of the tree are labeled using a breadth-first order:
task O is at level O, and tasks 1 and 2 are at level 1, and so
on. We generated different sizes of trees using the following
parameters: small trees with A = 0.8 and L,,,, = 30, medium
trees with A = 0.9 and L,,,, = 50, and big trees with A = 0.93
and L, = 60.

For the simulation, we consider that all tasks at a given level,
l, are processed at time, [. We have two different mapping
strategies for mapping tasks to processes: (1) a round-robin
mapping, where task x goes to process z mod P; and (2) a
random mapping, where task x goes to a process uniformly
drawn in [0, P — 1].

We compute the messages sent by the application at each
step (all tasks at a level in the tree), and determine whether the
processes become active or idle at the end of the step. When a
process was active and is again active at the end of the step, we
model the inherent distributed aspect of the algorithms using
three different models:
® Sinstant: The node does not transition to idle during the step, it
remains active throughout. This corresponds to the case where
computations and communications are instantaneous, thus a
node knows in advance whether it will stay active or not.

® Spcai: The node transitions to idle before returning to
active, unless there is a message to itself. This corresponds
to the case where communications are very slow compared to
computations, all messages are received at the end of the step,
S0 a process transitions to idle because it cannot know in in
advance whether it will stay active or not.
® Sioad: The node transitions to idle before returning to active
only if it has no message for itself and if its load is smaller
than all the loads of the nodes that send a message to it:
this is because in that case, it terminates computing before
receiving any load from the other guys. This corresponds to
the case where computations are long and messages takes very
short time. We define the load to be equal to the number of
messages received at the previous step (each of them implying
the execution of a task, this corresponds to assuming that all
tasks have the same weight).

To compare the performance of CDA to other algorithms,
we compute the number of control messages sent by each
algorithm, as detailed below.

* HCDA and CDA: all messages carry credits, so there is no
control message — except when one process becomes idle
and needs to return its credit to the controlling agent (flush),
or when it does not have credit anymore and needs to send
a message to the controlling agent to continue (borrow).
Each time we detect that a process needs to flush or borrow,
we add one control message. Otherwise, when processes
transition from idle to active or from active to idle, we do not
count anything, as these algorithms do not send messages
for simple transitions.

* 4C: once the list of messages (sent during a step) is com-
puted, we go through the list of all processes in descending
order. If a process becomes idle, we check if it belongs to
the wave. If it does not, it is added to the wave; if the process
has children, they also belong to the wave. By going through
the processes in descending order, we ensure the wave goes
as high as possible in the control tree. Each time the root
belongs to the wave, we account for 2(P — 1) messages (2
the number of edges in the control tree).

* EDOD: each time a process, p;, transitions from idle to
active, it means that it received messages from a set of
processes, S. We then compute the union of all paths from p;
to each one of the processes in the set S. Finally, we sum the
number of edges in that union of paths, which accounts for
the number of control messages sent at this step by process
p;- When a process, p;, transitions from active to idle, we
check that its whole subtree is composed of idle processes
at the end of the step. In that case, we account for one
control message that goes up in the control tree; there are n
messages total, where n is the size of the subtree, because
each node of the subtree is the root of an idle subtree itself.

Figures 2 to 5 present the number of control messages
for all algorithms. We had to use a logarithmic scale on the
Y-axis to report a range of different numbers. The data is
presented for a wide range of tree sizes, ranging from small
(47 tasks in Figure 2) and medium (397 tasks in Figure 3)
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to large (17,797 tasks in Figure 4) and very large (202,007
tasks in Figure 5), using an initial credit, C;,;; = 232. First,
all the simulations show that CDA dramatically outperforms
HCDA. Interestingly, the only occurrences of BORROWs for
CDA are when the mapping is random and there are only
a few processes. In this case, the processes may receive a
lot of messages, thus a lot of tasks to execute, and thus
a higher number of messages to send afterward. With the
credit reducing quickly at the beginning because there is a
good probability that a process is idle in the first steps, and
there may be too many messages to send compared to the
credit. Still, the number of BORROWs is — on average —
null, especially when using round-robin mapping. The only
overhead in terms of messages added by CDA comes from
the number of flushes (when a process becomes idle and has
no message to send). When using round-robin mapping, the
number of flushes per process is less than the number of
control messages sent by the 4C algorithm (on average for the
first figure). However, when we set the mapping to be random,
4C proves to be more efficient than CDA when P > 100.
Between random and round-robin mapping, the number of
control messages for CDA does not change much, whereas
random mapping drastically reduces the number of control
messages for 4C.

Overall, we expect CDA to send less messages than 4C, in
particular when the number of processes increases. Looking
at the top-right plots in each figure, where the model is Sjyaq
and the mapping is round-robin (achieving more load balance
than random), the number of flushes per process tends to stay
constant when the number of processes increases, whereas 4C
produces more messages.

Table I provides the average ratio, over the three models,
of the number of control messages generated by 4C, EDOD,
and HCDA over that of CDA, for the four tree sizes. For
the round-round mapping, the best competitor is 4C which
sends three times fewer messages for 47-task trees but three
and a half times more for 202, 007-task trees. For the random

mapping, 4C is also the best competitor, with a 20% gain
for 47-task trees but twice more messages for 202, 007-task
trees. For both mapping, EDOD and HCDA generate an
order of magnitude more messages than CDA. Altogether, for
large trees, CDA succeeds in dramatically reducing the total
number of control messages in comparison with the other three
algorithms 4C, EDOD, and HCDA.

VI. RELATED WORK

[13] proposes a method to precisely define the metrics of
efficiency for distributed termination detection. We leverage
this method in our analysis.

Termination detection has been studied extensively from
the theoretical perspective: [14] demonstrates that different
classes of detectors are equivalent through automatic transfor-
mations; see Ch. 6 of [1] and Ch. 9 of [15].

Wave termination detection algorithms include [16], based
on distributed snapshots, and [17], designed for asynchronous
wide-area networks by combining a reduction tree with a
logical ring. Delay optimal algorithms include [18] and [6],
and we compare one that is representative to this work.
Weight throwing, or distributed credit algorithms, have been
extensively studied theoretically: [19] proposes to use them
to implement garbage collection mechanisms; [20] introduces
the Doomsday termination detection protocol that deals with
migrating tasks; [21] uses a mobile agent to count the weight
remaining in the system; [22] and [23] consider the partic-
ular case of mobile networks; and [24] considers resilient
approaches to these algorithms. A recent work [25] introduces
resilient optimistic termination.

Few works compare, experimentally or practically, the dif-
ferent algorithms to evaluate the behavior in average or real-
world conditions. In [26], this comparison is conducted over
a simple benchmark consisting of 100 randomly generated
nested graphs of tasks.



Tree size 4C round-robin | 4C random EDOD round-robin | EDOD random HCDA round-robin | HCDA random
47 0.32 0.83 12.08 16.07 37.68 38.28
397 1.28 0.65 17.09 18.97 11.65 14.36
17,797 3.34 1.60 68.06 64.56 12.70 12.66
202,007 3.52 1.98 201.68 176.38 95.40 87.98

Table I: Average ratio of the number of control messages generated by 4C, EDOD, and HCDA over that of CDA, for the

round-robin and random mappings, and for all tree sizes.

VII. CONCLUSION

This paper revisits distributed termination detection algo-
rithms in the context of HPC applications, motivated by the
need to efficiently detect termination of work flows for which
the total number of tasks are data-dependent and, hence, not
known until during execution. We introduce an efficient vari-
ant, CDA, of the credit distribution algorithm, and compare
it to the initial credit distribution algorithm, HCDA, and to
two other termination detection algorithms, 4C and EDOD.
We analyze each algorithm for simplified task-based kernels
and show the superiority of CDA in terms of the number of
control messages.

Future work will be devoted to providing a highly tuned
implementation of each termination detection algorithm within
the task based runtime system PARSEC [27], and to compare
their performance for a variety of benchmarks reflecting sci-
entific applications that exhibit dynamic behaviors. This will
enable us to quantify the overhead of each algorithm in terms
of absolute application performance, not just in terms of the
number of control messages that are generated.
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